Key Words 【傷害予防: injury prevention、回旋トレーニング: rotational training、背部痛: back pain、 野球: baseball、ゴルフ: golf、テニス: tennis、ホッケー: hockey】

回旋打撃動作を行なう選手の 腰の傷害を予防する

Preventing Lumbar Injuries in Rotational Striking Athletes

Aaron Gillies, ¹ MS, CSCS Sandor Dorgo, ² PhD, CSCS

¹Pair & Marotta Physical Therapy, Bakersfield, California

要約

回旋打撃動作を伴うスポーツ(ゴルフ、野球、テニス、ホッケーなど)は、回旋を伴わないスポーツに比べて腰部の傷害発生率が高い。腰部の傷害予防には、腰の回旋力への理解と、適切なエクササイズプログラムの作成が重要である。本稿では、腰部の傷害が回旋スポーツに多い理由についての知見を提供し、回旋スポーツ選手全般に適用できるエクササイズプログラムの作成に関する提言を行なう。

大抵のスポーツは何らかの回旋動作 を伴うが、なかでも物体の打撃を伴う スポーツはしばしば「回旋スポーツ」 に分類される。ゴルフ、テニス、野球、 ホッケー、ラクロス、およびクリケッ トなどのスポーツは、用具を使って物 体を打撃する動作が競技の重要部分を 占める。これらは一見、異なるスポー ツであるが、いずれも競技の重要部分 である特異的活動を行なう際には、腰 椎が水平面上で動作する。これらのス ポーツにおいては、スイング動作中に 高速で角速度が発生する(55)。その他 のスポーツ動作としては、槍投げやハ ンマー投げなども回旋スポーツに含ま れる可能性がある。打撃に用いる道具 によってモーメントアームが長くなる と、そのぶん脊柱に加わるトルクが大 きくなり、脊柱の傷害発生リスクが高 まる。そのような傷害が最も多発する 部位は、椎間板(IVD)、椎間靭帯、脊柱 筋群、および椎骨そのものである。

回旋スポーツ選手の21~84%が、競技を行なった結果、または競技中に腰部を受傷している(1,17,18,35)。しかし、回旋スポーツにおいて腰部の傷害が発生する原因はまだよくわかっていない。Panjabi(40)によると、腰椎には安定性を維持するために一体となって動く3つの主要サブシステムがある。その3つとは、受動的サブシステム(靭帯、IVD、椎骨)、腰椎の局所的な筋腱構造、および神経サブシステム(神経と神経系)である(40)。このモデルは回旋スポーツの選手に特化したものではないが、腰部の傷害予防を目的としたトレーニングプログラム作成の起点になる。

そこで本稿では、回旋スポーツの動作中における腰椎のメカニズム、および回旋スポーツの選手に多い傷害のタイプを明らかにし、その上で、回旋スポーツ選手のための傷害予防エクササイズプログラムを提示する。このプロ

²Department of Kinesiology, University of Texas at El Paso, El Paso, Texas

グラムは神経筋の適応を促す段階的モデルに基づいており、特定のスポーツ の競技シーズンには直接関連していないが、一般的なガイドラインとして、回旋スポーツ選手全般のプログラムデザインに活用できる。

腰椎のメカニズム

回旋動作中は腰椎に様々な力が加わ る。これらの力は、腰椎の椎間関節、 IVD、および靭帯に影響を及ぼす可能 性がある。力の多くは力学的な「安全 地帯」、すなわち脊柱の安定基盤上で 発生し、何ら有害な影響は及ぼさない (48)。回旋それ自体は腰椎にとって悪 いものではなく、むしろIVD内の水分 交換と栄養の代謝回旋を促進すること により、IVDの弾性を向上させる効果 が明らかになっている(6)。しかし、腰 椎の回旋が通常の可動域を超えて行な われる場合、IVDに加わるストレスは 「安全地帯」を逸脱し、IVDの線維輪の 部分に損傷を与えかねない(6)。「安全 地帯」とは、通常の機能が結合組織に過 度のストレスを与えずに行なわれる通 常の可動域をいう。

腰椎にはL1/L2関節からL5/ S1関節まで、全部で5つの椎間関節が ある。腰椎の椎間関節の回旋角度はひ とつあたり $0.6 \sim 2.2^{\circ}$ である(38)。脊 柱をニュートラルにした姿勢において 可動域が最も大きい椎間関節は、T12 /L1、L1/L2、およびL2/L3で あり、遠位の椎間関節の回旋角度は1° 以下である。したがって、腰椎の可動 域は最大でも5~7°ほどであり、腰 椎を伸展させるとさらに小さくなる (3.11.38.56)。腰椎を最大限まで回旋さ せると、椎間関節が圧迫され、圧縮力 が増大する。腰椎のメカニズムをさら に複雑にする要素として、腰椎の矢状 面での姿勢変化が回旋のメカニズムに

影響を及ぼすことが明らかになっている(11,19)。脊柱の屈曲が回旋に加わると、屈曲によって椎間腔が広がり、椎間関節同士が衝突する前により多く回旋できるようになるため、腰椎の潜在的な回旋角度が13.8%増大する(11)。 反対に、脊柱を伸展させると、椎間関節の間が狭くなり、より少ない回旋で衝突するため、回旋角度が23.8%減少する(11)。

回旋中にIVDに加わる圧縮力は小さい(44)。しかし、超最大の複合回旋、例えば屈曲との複合回旋が可能な場合、IVDの線維輪の層に加わる引張応力は増大し、IVDに加わる圧縮力も増大する(44)。一方、脊柱伸展との複合回旋は、椎間関節に加わる圧縮力を増大させ、椎骨の関節突起間部にストレスをかける(11)。また、剪断力もIVDの健康状態に大きな影響を及ぼす。例えばCostiら(10)は、合計の剪断力は腰椎の屈曲、伸展、および側屈のほうが回旋より大きいが、動作角度1°当たりの剪断力は回旋が最も大きかったと報告している。

腰椎の軸回旋と屈曲を同時に行な うなどの複合動作は、IVDと椎骨の力 学に大きな影響を及ぼす。回旋打撃ス ポーツの選手は、それぞれのスイング パターンにおいてしばしばこのよう な複合動作を行なう。例えばゴルフの バックスイングでは、腰椎を軽く伸展 させて脊柱を回旋させる(22)。ダウン スイングに入ると、腰椎はよりニュー トラルな姿勢になり、ボールの打撃時 にはニュートラルかやや屈曲した姿勢 になる。その後も回旋は継続し、最後 はやや側屈した伸展位に戻る(22)。野 球のバッターもスイングの最後は腰椎 を伸展、回旋させる。ただし打撃時の ボールの位置は様々であるため、打撃 時のバッターの姿勢はその時々で異な る。ホッケーのスラップショットも、 バックスイングの最高点からフォロー スルーの終了までよく似た姿勢変化を たどるが、動作の完了時は脊柱を回旋、 屈曲させる点が異なる。

このとき、脊柱と体幹の筋群は収縮して脊柱のスティフネスを高め、下肢から腕を経由して用具に最大限の力を伝達しようとする。ゴルフ選手もこれと同じ動きをする。しかし、打撃中に姿勢を維持できないと、脊柱は不安定になるか、不適切な姿勢で安定化される可能性が高い(34)。したがって、適切な神経筋のコーディネーションは、スイング中の脊柱の安定性を最大化する上で非常に重要である。

回旋スポーツ選手における 腰の傷害のタイプ

腰椎の傷害はIVD、椎間関節、また は椎間靭帯に影響を及ぼしうる。脊柱 を屈曲させると回旋角度が増大する ため、回旋に抵抗する主要部分となる IVDにはより大きなストレスが加わる (3)。一方、脊柱を伸展、回旋させると、 椎間関節の間が狭くなるため、回旋に よる椎間関節同士の衝突が早くなる (16)。したがって、椎間関節の傷害の 主な発生機序は、脊柱の回旋と伸展の 複合動作である。このような複合動作 は、テニスのオーバーヘッドサーブや 野球のピッチング、クリケットのボウ リング(投球)など、オーバーヘッドの 回旋を伴うスポーツやスポーツ動作に 多くみられる。一方、脊柱の屈曲と回 旋の複合動作は、野球やホッケーなど、 腰の高さかそれ以下で打撃を行なう回 旋スポーツやアスリートに多くみられ る。その他のより一般的でない傷害は、 脊柱靭帯と椎間関節包の捻挫、横突起 の剥離骨折、関節突起間部の損傷、お よび肉離れである(3)。

腰の傷害の原因

医師は一般的に、腰痛を神経筋骨格 系の原因かそれ以外かで分類するが、 Koesら(27)は異なる分類法を提案して いる。それは腰痛を特異的腰痛(SLBP) と非特異的腰痛(NLBP)に分けるもの である(27)。この分類法では、椎間板 ヘルニア、椎間関節炎、または脊椎骨 折など、考えられる痛みの原因が明ら かなケースはSLBPとみなされる。しか し、慢性的な腰痛を抱えるアスリート の多くはNLBPに分類される。NLBP は痛みの原因がはっきりしないため、 対処と治療が困難である。SLBPであ れば、医師がそれに応じた治療の選択 肢を提示できる。これに対しNLBPは、 脊柱の局所的外傷以外の考えられる原 因を探らなければならない。これは多 くの場合、誤った筋の動員パターンや 相乗作用によるものである(42)。

慢性の腰痛を抱えるアスリートは、 特定の単独の筋、例えば脊柱起立筋 や腹横筋などの筋力が不足している 可能性があると、研究は示唆している (8,13,20,39,50)。一方で、単独の筋より も、腹筋群の共縮と協調が腰部傷害の 原因である可能性を示唆する研究もあ る(6.15,33,43)。単独の筋の筋力不足が 原因とする説は主に腹横筋に焦点を当 てているが(13,20,50)、関連研究は特 に回旋スポーツ選手の背部痛(腰痛)に 焦点を当てていない。Hortonら(21) はゴルフ選手の筋力不足を調査し、腰 痛のある選手と健康な選手とでは、外 腹斜筋の収縮タイミングが異なること を明らかにしている。その他の研究で は、回旋動作において安定化の役割を 担う脊柱起立筋に焦点を当てている (7,29,54)。Cole & Grimshaw (9) の関連 研究において、腰痛のあるゴルフ選手 はバックスイングの開始前に脊柱起立 筋を活性化させるのに対し、健康なゴ ルフ選手はバックスイングの開始後に 脊柱起立筋を活性化させることが明ら かになっている。これをすべての回旋 スポーツ選手に一般化することはでき ないかもしれないが、これらの研究結 果は、脊柱起立筋群が腰椎の安定化に 重要な役割を果たしていることの裏付 けになる。

もうひとつの説は、脊柱起立筋、多 裂筋、腹横筋、および内·外腹斜筋を含 む複数の筋が共縮によって安定化を 行なっているという考えに基づいて いる(7,37,43)。Ngら(37)とRichardson ら(43)は、等尺性の回旋動作中に最大 レベルの共縮が起こることを明らかに した。回旋動作中に共縮が最大になる のであれば、受傷リスクも回旋中に最 大になると考えるのが妥当である。複 雑な回旋動作において共縮が不足する と、脊柱の安定性が低下すると考えら れる。また、上記2つの説を合わせた ようなCholewicki&Van Vliet(7)の研 究もある。同研究は、回旋中の脊柱の 安定性に単独で30%以上寄与してい る筋はないが、最も寄与率が高いのは 脊柱起立筋群であることを明らかにし ている(7)。したがって、脊柱起立筋群 の筋力不足は、それだけで回旋動作中 の脊柱を不安定化させる可能性があ る。

脊柱と体幹の筋群のトレーニングはベクトルが特異的である。体幹の特定動作を強化するには、同じ動作を用いて同じ方向に力を発揮するレジスタンストレーニングを行なう必要がある。しかし、体幹の回旋動作は単独の筋群の活性化によって生み出されるのではなく、回旋パワーは常に複数の筋群の共縮によって生み出される。したがって、たとえ単独の筋の筋力不足が回旋スポーツ選手の腰痛の原因であることが明らかになったとしても、問題の筋

を、その筋が主に力を発揮する方向に 鍛えるだけでは、必ずしも腰椎の安定 性は向上しない。例えば、脊柱伸展エ クササイズを行なって、脊柱起立筋群 を鍛えるだけでは、必ずしも回旋動作 中の脊柱の安定性は向上しない。代わ りに、安定化にかかわる筋系全体を用 いて回旋動作を行ない、回旋力を生み 出すか回旋力に抵抗するかさせなけれ ばならない。

そのほか、相乗作用による動作の非 効率性も、回旋スポーツ選手の腰痛 の原因ではないかと考えられている (36,51,52)。腰痛のある選手は、健康な 選手に比べて股関節の回旋可動域が小 さいことを複数の研究が指摘してい る(36,51,52)。また、胸椎の回旋可動域 を腰痛に関連づけた研究もある(56)。 元々胸椎は腰椎に比べて回旋可動域が 大きいため(56)、胸椎が最大の可動域 を発揮できない場合、代償として腰椎 により大きな回旋ストレスがかかると 推測できる。ただし、この潜在的な関 連性を完全に理解するには、さらなる 調査が必要である。それでも、筋の意 識と活性化、股関節と胸椎の可動性、 回旋力の安定化、および反応的な回旋 トレーニングに特化したトレーニング プログラムは、回旋スポーツ選手に有 益な効果をもたらす可能性が考えられ る。

もうひとつ傷害の原因として考えられるのは、ゴルフにおいて「Xファクター」を重視する傾向が強まっていることである。「Xファクター」とは、肩と股関節の回旋角度の差のことであり、この差が大きいほどXファクターは大きい(41)。 Xファクターの概念は、腹筋群に加える伸張を大きくすると、ボールの打撃時に筋群がより大きな力、より高速で収縮するというものである(53)。しかし、脊柱を回旋と同時

に伸展させることは、椎間関節に加わる力とIVDに加わる圧縮力を増大させるだけである(2.48)。

トレーニングプログラム

これまでにも、回旋スポーツのパフォーマンス向上を目的としたトレーニングプログラムが考案されている(4,12,30,46,47,49)。背部痛(腰痛)の軽減を目的としたプログラムもある(5,23,25,31,40)。しかし、回旋スポーツ選手の腰部の傷害予防を目的としたプログラムは少ない(46)。

脊柱の安定化と姿勢制御に寄与している筋群は、ローカル筋群とグローバル筋群に分けられる(14)。ローカル筋群とは、腰椎における分節間運動を直接制御する筋群である。このような筋群には、外側と内側の脊柱起立筋群、腹横筋、多裂筋、腰方形筋、および大腰筋が含まれる。一方のグローバル筋群は、内・外腹斜筋、腹直筋、僧帽筋上部と下部、菱形筋群、および広背筋など、分節間の動作には直接寄与しないが、腰椎と連動して胸椎と骨盤を動かし、より大きなトルクを生み出す筋がこれに分類される。

ローカル筋群は、主にタイプ I 筋線 維からなることが明らかになっている (24)。加えて、非アスリートの腰部の 傷害予防においては、筋力やパワーよ

り筋持久力の重要度が高いと考えら れている(32)。しかしアスリートの場 合、回旋動作においては筋力、パワー、 および反応性のほうが重要度が高いた め、筋持久力の向上はそれほど有益で ない可能性がある。回旋打撃スポーツ における回旋動作が高速であることを 考えると、傷害予防のエクササイズプ ログラムにおいては、腰部の前面と背 面の筋群の反射性がきわめて重要であ ることは明白である。そこで我々は、 回旋スポーツの選手に特化した傷害予 防プログラムを提案する。我々のプロ グラムは段階的な概略モデルに基づ いており、このモデルは神経筋促通段 階、動的安定性/持久力段階、筋力段 階、およびパワー段階の計4段階から なる。さらにオプションとして、パワー 向上エクササイズから続けて競技特異 的動作を行なう第5段階もある。例え ば、第4段階のエクササイズを実施後、 続けて野球のスイング動作を4~5回 行なうなどである。

意識/制御の第1段階では、神経筋 動作の促通と意識を高めるエクササイ ズを行なう。この段階のエクササイズ は、ごく小さな動作しか必要としない が、腹部と腰部の筋群の神経筋を活性 化させ、また姿勢制御の向上に役立つ。 これらの神経筋促通および動作意識の エクササイズは、健康な被験者におい て筋の動員パターンを改善すること が明らかになっている(45)。またこの 段階には、股関節と胸椎の可動性エク ササイズも行なう。これらのエクササ イズは、レップ/量を中程度~多めに $(12 \sim 20 \, \text{レップ} \times 1 \sim 2 \, \text{セット})$ 、外 的負荷を最小限にして行なう(写真1 ~ 3)₀

最初の数回のトレーニングセッションでエクササイズを失敗せず、適切な姿勢と目標強度で完了できるように

写真1 ヒップローテーション

写真2. ディープランジ・シークエンス

なった選手は、次の動的可動性/持久 力段階に進んでもよい。個人差がある ため、プログラムの漸進は早い選手と 遅い選手がいる。したがって、次の段 階へ進むかどうかの判断は、常に発揮 された能力を基に下さなければならな い。全段階のエクササイズ種目と負荷 のパラメータを表に示した。

動的可動性/持久力段階の主な目的 は、より大きな四肢の可動域で脊柱の 安定性を向上させることである。この 段階では安定性の要素を導入し、同時 に四肢の動作と非対称の負荷を加え る。プランクwithレッグリフトやマー チングヒップブリッジなどのエクササ イズは、安定化が必須でありながら回 旋トルクは比較的低い。この神経筋促 通段階で行なうエクササイズの目的 は、股関節と肩甲上腕関節の回旋を強 化する一方で、骨盤と肩は「積み重なっ ている」、すなわち両者の向きが完全 な一直線上にあり、互いの角度にずれ がない状態を維持することである。こ れらのエクササイズは2種目を1セッ トとして交互に行なうか、ストレート セット法で所定のレップ数または継続 時間を連続してこなすとよい(写真4 ~7)

外的負荷は次の筋力段階から導入する。筋力段階の主な目的は、脊柱の安定性とともに筋力を強化することである。ここでも腰椎の回旋を最小限に抑えることに動作の重点を置く。この段階では、肩と骨盤を常に一体として回旋させることを意識する。これを行なうためには股関節と肩関節の可動域が大きくなければならない。この段階のエクササイズとパラメータを表に示した。

プログラムの最終段階では筋パワー の向上を目指し、非対称の外的負荷を 高強度、高速で用いる。またこの段階 ではバリスティックな道具を使用し、最初は1回のみの動作から複数レップに漸進させて、レップ間にほとんど休息を入れずに行なう。またこの段階では、負荷をバリスティックに受け止める動作も取り入れ、回旋スポーツにおいてボールなどの物体を打撃する際、

脊柱をブレーシングで安定させ、力を 最大限に伝達するのに必要である急激 な筋収縮を再現する。さらに、パワー 段階では競技特異的スキルの強化をプ ログラムに組み込み、トレーニングで 獲得されるコアの筋力と安定性の競技 パフォーマンスへのさらなる転移を促

写真3 スティックアップ

写真4 デッドバグwithスタビリティボール

写真5 ロックアウトwithフォワードリーチ

す(26,28)。例えばホッケー選手なら、 股関節を下げ、低い姿勢でメディスン ボール・パーペンディキュラーヒップ スローを行ない、ボールをリリースし たあと体重を前脚に移してスラップ ショット動作を再現する。

結論

回旋スポーツのトレーニングにおい ては、脊柱の可動性ではなく安定性の 向上を図る。一部のプログラムでは、 骨盤を固定して肩と脊柱を力強く回旋 させる「Xファクター」と呼ばれる回旋 動作を取り入れている。しかし、高い 回旋トルクを生み出すことは腰椎と 腹筋群の仕事ではなく、股関節と肩関 節の仕事である。Xファクター、すな わち骨盤と肩との角度差が大きいと、 IVDにかかる負担や椎骨の関節突起間 部にかかるストレスが増大し、それが やがて椎間板ヘルニアや疲労骨折につ ながる。高い回旋トルクを下半身から 上半身へ伝えるのは体幹の筋群の仕事 である。腰椎の受傷リスクを低減する ためには、これらの筋群を個々のセグ メントではなく1個のまとまりとして 強化しなければならない。

神経筋促通、持久力、筋力、およびパワーの4段階からなる漸進的トレーニングプログラムを実行し、回旋動作中の腰椎の安定性を高めることで、選手は競技参加中の腰部の受傷リスクを低減することができる。この概略プログラムは、ゴルフのスイング、野球のスイング、円盤投げ、ホッケーのスラップショットといった回旋を伴うスポーツ動作のパフォーマンスに有益な効果をもたらす可能性がある。◆

References

 Alyas F, Turner M, and Connell D. MRI findings in the lumbar spine of asymptomatic,



写真6 パロフプレス

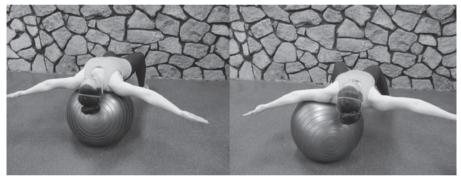


写真7 スタビリティボール・ラテラルロール

- adolescent, elite tennis players. *Br J Sports Med* 41: 836-841, 2007.
- Ashish A, Shweta S, and Singh SJ. Comparison of lumbar and abdominal muscle activation during two types of golf swing: an EMG analysis. *Int J Sport Sci* 12: 59–71, 2008.
- Campbell R and Dunn A. Sports-related disorders of the spine and sacrum. In: Essential Radiology for Sports Medicine. Robinson P, ed. New York, NY: Springer, 2010. pp. 217–240.
- Cardosa-Marques MA. Strength training in adult elite tennis players. Strength Cond J 27: 34–41, 2005.
- Carpenter DM and Nelson BW. Low back strengthening for the prevention and treatment of low back pain. Med Sci Sports Exerc 31: 18-24, 1999.
- Chan S, Ferguson S, Wuertz K, and Gantenbein-Ritter B. Biological response of the intervertebral disc to repetitive short term cyclic torsion. Spine 36: 2021–2030, 2011.
- 7. Cholewicki J and Van Vliet JJ IV. Relative

- contributions of trunk muscles to the stability of the lumbar spine during isometric exertions. *Clin Biomechan (Bristol Avon)* 17: 99–105, 2002.
- Cole MH and Grimshaw PN. Electromyography of the trunk and abdominal muscles in golfers with and without low back pain. J Sci Med Sport 11: 174–181, 2008.
- Cole MH and Grimshaw PN. Trunk muscle onset and cessation in golfers with and without low back pain. J Biomechan 41: 2829– 2833, 2008.
- 10. Costi JJ, Stokes IA, Gardner-Morse M, Laible JP, Scoffone HM, and Iatridis JC. Direct measurement of intervertebral disc maximum shear strain on six degrees of freedom: Motions that place disc tissue at risk of injury. *J Biomechan* 40: 2457–2466, 2007.
- Drake JDM and Callaghan JP. Do flexion/ extension postures affect the in vivo passive lumbar spine response to applied axial twist moments? Clin Biomechan (Bristol Avon) 23: 510-519, 2008.

表の段階的な漸進			
第1 段階	第2段階	第3段階	第4段階
12~20レップ×1~2セット	12~20レップ×1~2セット	左右各6~8 レップ×2~3 セット、 6~ 10 RM	4~8レップ×2~3セット、 12~20RM、速いテンポで
スパイン・ペルビックティルト	クワドラプティッド・リフティ ング	シングルアーム・ダンベルロウ	リードレッグ・ヒップスロー
クワドラプティッド・ペルビッ クティルト	デッドバグwithスタビリティ ボール	シングルアーム・ダンベルプレス	トレイリングレッグ・ヒップ スロー
クロコダイルブリージング	パロフプレス	オルタネイティング・ダンベルチェ ストプレス	メディスンボール・ローテー ショナル・チェストパス
クワドラプティッド・シット バック	サイドプランク(3×10秒)	シングルアーム・スタンディング・ ケーブルロウ	メ ディ ス ン ボ ー ル・ロ ー テ ー ショナル・ヒップスロー
スティックアップ/アーム スライド	スパインマーチング	シングルアーム・スタンディング・ ケーブルプッシュ	メディスンボール・チョップ スロー
サイドライイング・ソラシック ローテーション	スパイン・ヒップブリッジ	スタンディング・ケーブルプル/ プッシュ	アドレス姿勢からのメディスン ボール・キャッチ
	シングルレッグ・ヒップブリッ ジ	1/2 ニーリング·ロープケーブル チョップ	
ストレッチング	スティックアップ	1/2ニーリング·ロープケーブルリフト	
4の字ストレッチ	スタビリティボール・ロールア ウト	シングルアーム・シングルレッグ・ ダンベルロウ	
4の字ヒップローテーション	スタビリティボール・ラテラル ロール	シングルアーム・デクラインケーブ ルプレス	第3段階のエクササイズ全部を 爆発的なテンポで実施
1/2 ニーリング・ヒップフレクサーストレッチ	ロックアウトマーチング	1/2ニーリング・ダイアゴナルプル	
ディープランジ・シークエンス	メディスンボール・スクワット withローテーショナルリフト		
ロープ・インターナル/エクス ターナルショルダー	ロックアウトwithフォワード リーチ	プランクwithオルタネイト・フォ ワードリーチ	
		スタビリティボール・ロックアウト マーチング	

- Earp JE and Kraemer WJ. Medicine ball training implication for rotational power sports. Strength Cond J 32: 20–25, 2010.
- Ebraheim NA, Hassan A, Lee M, and Rongming X. Functional anatomy of the lumbar spine. Semin Pain Med 2: 131-137, 2004.
- 14. Evans C and Odreive W. A study to investigate whether golfers with a history of low back pain show a reduced endurance of transversus abdominis [abstract]. *J Man Manip Ther* 8: 162–174, 2000.
- Gardner-Morse MG and Stokes IAF. The effects of abdominal muscle coactivation on lumbar spine stability. Spine 23: 86–92, 1998.
- 16. Garges KJ, Nourbakhsh A, Morris R, Yang J, Mody M, Patterson R. A comparison of and

- the torsional stiffness of the lumbar spine in flexion and extension. *J Manipulative Physiol Ther* 31: 563–569, 2008.
- Gosheger G, Liem D, Ludwig K, Greshake O, and Winkelmann W. Injuries and overuse syndromes in golf. Am J Sports Med 31: 438–443, 2003.
- Hangai M, Kaneoka K, Hinotsu S`, Shimizu K, Okubo Y, Miyakawa S, Mukai N, Sakane M, and Ochiai N. Lumbar intervertebral disk degeneration in athletes. Am J Sports Med 37: 149–155, 2009.
- Hindle RJ and Pearcy MJ. Rotational mobility of the human back in forward flexion. J Biomed Eng 11: 219–223, 1989.
- 20. Hodges PW and Richardson CA. Altered trunk muscle recruitment in people with

- low back pain with upper limb movement at different speeds. *Arch Phys Med Rehabil* 80: 1005–1012, 1999.
- Horton JF, Lindsay DM, and Macintosh BR. Abdominal muscle activation of elite golfers with chronic low back pain. Med Sci Sports Exerc 33: 1647–1654, 2001.
- Hume PA, Keogh J, and Reid D. The role of biomechanics in maximizing distance and accuracy of golf shots. Sports Med 35: 429– 449, 2005.
- Jackson JK, Shepared TR, and Kell RT. The influence of periodized resistance training on recreationally active males with chronic nonspecific low back pain. J Strength Cond Res 25: 242–251, 2011.
- 24. Johnson MA, Polgar J, Weightman D, and

- Appleton D. Data on the distribution of fibre types in thirty-six human muscles: an autopsy study. *J Neurol Sci* 18: 111–129, 1973.
- Kell RT and Asmundson GJG. Comparison of two forms of periodized exercise rehabilitation programs in the management of chronic nonspecific low-back pain. J Strength Cond Res 22: 513–523, 2009.
- 26. Keogh JWL, Aickin SE, and Oldham ARH. Can common measures of core stability distinguish performance in a shoulder pressing task under stable and unstable conditions? J Strength Cond Res 24: 422–429, 2010
- Koes BW, van Tulder MW, and Thomas S. Diagnosis and treatment of low back pain. BMI 332: 1430–1434, 2006.
- 28. Kraemer WJ, Hakkinen K, Triplett-McBride NT, Fry AC, Koziris LP, Ratamess NA, Bauer JE, Volek JS, McConnell T, Newton RU, Gordon SE, Cummings D, Hauth J, Pullo F, Lynch JM, Mazzetti SA, and Knutgen HG. Physiological changes with periodized resistance training in women tennis players. Med Sci Sports Exerc 35: 157–168, 2003.
- Kumar S, Narayan Y, and Garand D. Electroymyography of trunk muscles in graded axial rotation. J Electromyogr Kinesiol 12: 317-328, 2002.
- 30. Lephart SM, Smoliga JM, Myers JB, Sell TC, and Tsai Y. An eight-week golf-specific exercise program improves physical characteristics, swing mechanics, and golf performance in recreational golfers. J Strength Cond Res 21: 860-869, 2007.
- Marshall PWM and Murphy BA. Evaluation of functional and neuromuscular changes after exercise rehabilitation for low back pain using a Swiss ball: A pilot study. J Manipulative Physiol Ther 29: 550–560, 2006.
- 32. McGill SM, Grenier S, Bluhm M, Preuss R, Brown S, and Russell C. Previous history of LBP with work loss is related to lingering effects in biomechanical physiological, personal, and psychosocial characteristics. *Ergonomics* 46: 731–746, 2003.
- McGill SM, Grenier S, Kavcic N, and Cholewicki J. Coordination of muscle activity to assure stability of the lumbar spine. J Electromyogr Kinesiol 13: 353–359, 2003.
- McHardy A and Pollard H. Muscle activity during the golf swing. Br J Sports Med 39: 799–804. 2005.
- McHardy A, Pollard H, and Luo K. Oneyear prospective study on golf injuries in Australian amateur golfers. J Sci Med Sport 9: 28, 2006.
- 36. Murray E, Birley E, Twycross-Lewis R, and Morrissey D. The relationship between hip rotation range of movement and low back pain prevalence in amateur golfers: An observational study. *Phys Ther Sport* 10: 131-135, 2009.
- 37. Ng JKF, Richardson CA, Parnianpour M, and Kippers V. EMG activity of trunk muscles and torque output during isometric axial rotation exertion: a comparison between back pain patients and matched controls. J Orthop

- Res 20: 112-121, 2002.
- Ochia RS, Inoue N, Renner S, Lorenz EP, Lim T, Andersson G, and An HS. Threedimensional in vivo measurement of the lumbar spine segmental motion. Spine 31: 2073–2078, 2006.
- O' Sullivan PB, Twomey L, and Allison GT. Altered abdominal recruitment in patients with chronic back pain following a specific exercise intervention. J Orthop Sports Phys Ther 27: 114–124, 1998.
- Panjabi MM. The stabilizing system of the spine. Part I. Functions, dysfunction, adaptation and enhancement. J Spinal Disord Techn 5: 383–389, 1992.
- Parizale JR and Mallon WJ. Golf injuries and rehabilitation. Phys Med Rehabil Clin N Am 17: 589–607, 2006.
- Renkawitz T, Boluki D, and Grifka J. The association of low back pain, neuromuscular imbalance, and trunk extension strength in athletes. Spine J 6: 673–683, 2006.
- Richardson C, Toppenberg R, and Jull G. An initial evaluation of eight abdominal exercises for their ability to provide stabilization for the lumbar spine. Aust J Physiother 36: 6–11, 1990.
- Shirazi-Adl A. Nonlinear stress analysis of the whole lumbar spine in torsion—Mechanics of facet articulation. *J Biomechan* 27: 289–299, 1994.
- 45. Stevens VK, Coorevits PL, Bouche KG, Mahieu NN, Vanderstraeten GG, and Danneels LA. The influence of specific training on trunk muscle recruitment patterns in healthy subjects during stabilization exercises. Man Ther 12: 271-279, 2007
- Szymanski D and Fredrick GA College baseball/softball periodized torso program. Strength Cond J 21: 42–47, 1999.
- 47. Szymanski DJ, McIntyre JS, Szymanski JM, Bradford TJ, Schade RL, Madsen NH, and Pascoe DD. Effect of torso rotational strength on angular hip, angular shoulder, and linear bat velocities of high school baseball players. J Strength Cond Res 21: 1117–1125, 2007.
- Tanaka ML, Nussbaum MA, and Ross SD. Evaluation of the threshold of stability for the human spine. *J Biomechan* 42: 1017–1022, 2009
- Thompson CJ, Cobb KM, and Blackwell J. Functional training improves club head speed and functional fitness in older golfers. J Strength Cond Res 21: 131–137, 2007.
- Urquhart DM, Hodges PW, Allen TJ, and Story IH. Abdominal muscle recruitment during a range of voluntary exercises. *Man Ther* 10: 144–153, 2005.
- Vad VB, Bhat AL, Basrai D, Gebeh A, Aspergren, and Andrews JR. Low back pain in professional golfers: The role of associated hip and low back range-of-motion deficits. *Am J Sports Med* 32: 494–497, 2004.
- 52. Van Dillen LR, Bloom NJ, Gombatto SP, and Susco TM. Hip rotation range of motion in people with and without low back pain who participate in rotation-related sports. *Phys*

- Ther Sport 9: 72-81, 2008.
- Watkins RG and Dillin WH. Lumbar spine injury in the athlete. Clin Sports Med 9: 419-448 1990
- Watkins RG, Uppal GS, Perry J, Pink M, and Dinsay JM. Dynamic electromyographic analysis of trunk musculature in professional golfers. Am J Sports Med 24: 535–539, 1996.
- 55. Welch CM, Banks SA, Cook FF, and Draovitch P. Hitting a baseball: A biomechanical description. J Orthop Sports Phys Ther 22: 193-201, 1995.
- Willems JM, Jull GA, and Ng JK-F. An in vivo study of the primary and coupled rotations of the thoracic spine. *Clin Biomechan (Bristol Avon)* 11: 311–316, 1996.

From *Strength and Conditioning Journal* Volume 35, Number 2, pages 55-62.

著者紹介

Aaron Gillies:

Pair & Marotta Physical Therapyの治療後のフィットネス責任者で、カリフォルニア州ベーカーズフィール ド に あ るCal State Universityの非常勤職員。

Sandor Dorgo:

University of Texas at EI Pasoキネシオロジー学部 准教授で大学院生コーディ ネーター。